Students' Guide to

Practicals on
Systems-on-Chip
Design

Isuru Nawinne

Faculty of Engineering - University of Peradeniya

Students' Guide to Practicals on Systems-on-Chip Design

By Isuru Nawinne

© 2025, by Creative Commons. This work is licensed under a Creative Commons
Attribution-NonCommercial 4.0 International. To view a copy of this license, visit

https: //creativecommons.org/licenses/by-nc/4.0/ or send a letter to Creative Commons,

PO Box 1866, Mountain View, CA 94042, USA. This license allows reusers to distribute,
remix, adapt, and build upon the material in any medium or format, so long as attribution
is given to the creator. The license allows only for non-commercial use.

ISBN 978-624-92913-3-1
Downloadable ebook and supplementary material available at
https: //cepdnaclk.github.io/soc-design

Publisher:

e

Dr. Isuru Nawinne,

Department of Computer Engineering, Faculty of Engineering,
University of Peradeniya,

Peradeniya 20400,

Sri Lanka.

isurunawinne@eng.pdn.ac.lk https: //people.ce.pdn.ac.lk /staff /academic/isuru-nawinne /

https://creativecommons.org/licenses/by-nc/4.0/
https://people.ce.pdn.ac.lk/staff/academic/isuru-nawinne/

I

Content
Content 2
Preface 3
Introduction 4
Tools Used 5
Field Programmable Gate Arrays (FPGASs) 6
Systems-on-Chip (SoCs) 12
Combining SoC Concepts with FPGA Technology 12
Design Process for FPGA-Based SoCs 13
Software Development for the SoC 14
Laboratory Work Overview 15
Practical 1 - Getting Started with SoC Design 16
Part 1: First SoC - LED Counter 16
Part 2: JPEG Encoder SoC 30
Practical 2 - Processor Customization 33
Motivation for Processor Customization 33
Types of Processor Customizations 34
Custom Instructions 34
The Process of Including a Custom Instruction 35
Nios II Custom Instructions 35
Exercise: Custom Instruction for CRC Computation 37
Practical 3 - Multiprocessor Systems-on-Chip 39
Part 1: Producer-Consumer Applications on a Shared Memory Multiprocessor 39
Part 2: Hardware FIFO-based Communication 41
Practical 4 - JPEG MPSoC Case Study 42
Part 1: Pipelined JPEG MPSoC 42
Application Decomposition 42
Pipeline Architecture 43
Synchronization and Performance Measurement 44
Part 2: Improving Performance 45
1. Processor Customization 45
2. Pipeline Extension 45
3. Superscalar Pipeline Stages 45
Research and Analysis 46
Learning Outcomes 46
2

Preface

The rapid evolution of digital systems has brought hardware and software closer than
ever. Modern computing platforms, from embedded controllers to cloud-scale
accelerators, frequently integrate reconfigurable logic, high-performance processors, and
diverse peripherals into compact, efficient, and intelligent systems. At the heart of this
transformation lies the system-on-chip (SoC) paradigm and the practical ability to realize
such systems using field-programmable gate arrays (FPGASs).

This book aims to introduce students to the fundamental concepts of SoC design and
FPGA-based prototyping using industrial-grade tools. It bridges theory and practice,
focusing not only on what SoC and FPGA technologies are, but how they are used in real
engineering workflows. Beginning with the building blocks of reconfigurable logic, the
book guides learners through the process of designing, analyzing, synthesizing, testing,
and deploying complete digital systems on FPGA hardware.

The material grew out of a set of lectures and laboratory sessions delivered to
undergraduate engineering students. Real systems, real tools, and real hardware
experiences shape the content throughout. By working through the examples and
exercises, students develop an integrated understanding of hardware architecture, digital
logic, embedded systems, and tool-driven engineering processes.

Whether you are a student encountering SoC concepts for the first time, a practitioner
seeking a concise introduction, or an educator looking for structured material for
project-based learning, this book provides a practical and accessible starting point.

Isuru Nawinne

Senior Lecturer in Computer Engineering

Introduction

This book follows a hands-on, application-driven learning approach. Readers are
encouraged not only to understand the principles of SoCs and FPGAs, but to build, test,
and experiment with real designs on actual hardware. The learning experience is
structured around several complementary methods:

Conceptual Foundations
Each chapter develops essential theoretical knowledge:

e digital logic and reconfigurable fabrics,
e SoC architectures and components,

e hardware-software interaction,
e system-level design flows.

These concepts prepare readers for the design tasks performed later in the book.

Guided Walkthrough

The first practical provides step-by-step guidance through the development environment
and toolchain. Students learn how to:

e create FPGA projects,
e configure SoC components,
e perform pin planning,

e compile and program hardware,

execute software on soft processors.

This walkthrough helps readers build confidence before advancing to more complex
systems.

Progressive, Realistic Design Work

Later practicals introduce progressively advanced concepts that integrate multiple
hardware and software modules. These design work mirror industry workflows and
encourage students to think critically about:

e modular design,

e resource optimization,

e timing constraints,

e communication and interfacing,

e hardware/software co-design.

Experimentation and Inquiry

Readers are encouraged to modify parameters, alter architectures, and test alternative
designs. Through iterative experimentation, students solidify their understanding and
develop engineering intuition.

Reflection and Analysis

Each practical includes checkpoints and discussion prompts to help learners analyze their
results, interpret performance behavior, and understand the implications of design
decisions.

Tools Used

The examples in this book use a professional, industry-proven toolchain for FPGA-based
SoC design. All tools are widely used in academic and commercial environments:

e Intel (Altera) FPGAs - Cyclone series FPGA devices (Terasic DE2 Development Kit)
e Quartus Prime Web Edition - for designing, analysis and synthesis
e Qsys (Platform Designer) - for building and integrating SoC components

e Nios II Software Build Tools - for building and running software on softprocessors

These tools support the complete development workflow, from writing embedded
programs to deploying them on the FPGA.

Field Programmable Gate Arrays (FPGASs)

An FPGA is an integrated circuit designed to be configured by the user. In essence, it is a
hardware device whose internal logic can be reprogrammed after manufacturing.

When we speak about programmable hardware, we must recognize that programmability
exists at different levels. A modern computer processor is also programmable, but at a
much higher level. You write software programs, compile them, and the processor
executes those instructions. Although the hardware is fixed, the behavior of the system
changes based on the software running on it.

Traditional integrated circuits, however, are not programmable. They are designed for a
specific purpose, and once fabricated, that purpose is fixed. You design a logic circuit
composed of gates, define its inputs and outputs, and specify the function it must
perform. After that, the design moves through the typical stages of hardware production:
design, synthesis, fabrication, packaging, and finally deployment.

During synthesis, the design described at the register-transfer level or gate level is
transformed into a transistor-level design. In conventional integrated circuit design, the
output of the synthesis process is a layout of transistors, typically implemented using
lithography on a silicon wafer. You end up with a physical chip containing transistors and
wiring that implement the logic exactly as designed.

This fabrication process is expensive. Producing a single custom chip can cost thousands
of dollars, even before packaging. Once fabricated, the chip is packaged, for example, in a
dual in-line package or any of several modern surface-mount formats. The package
protects the chip and provides pins or pads that allow it to be mounted on a circuit board.
Once fabricated and packaged, the chip performs exactly the function it was designed for,
and nothing else.

FPGAs, however, follow a different approach. Instead of designing a circuit, synthesizing it
to transistors, and sending it to a foundry, you begin with a pre-manufactured,
pre-packaged FPGA device already mounted on a board. This device contains a large array
of configurable hardware building blocks. You design your logic circuit in the usual way,
but instead of synthesizing it down to transistors, you synthesize it to the primitive
elements that exist inside the FPGA.

These primitive elements, often referred to as logic blocks or logic elements, are the basic
computational units of the FPGA. The synthesis tool maps your gate-level design onto

these logic elements, producing a configuration file that, when loaded onto the FPGA,
causes the device to behave as the logic circuit you designed. This configuration process is
what we commonly refer to as “programming” the FPGA. While the term is borrowed from
software development, the underlying concept is quite different: instead of executing
software instructions, the FPGA’s hardware itself is being reconfigured.

The key advantage of this approach is flexibility. Once a logic circuit is implemented on
the FPGA, it functions as intended. But if a different functionality is needed, the FPGA can
be reconfigured with a different design using the very same physical device. In other
words, the hardware can be rewritten. This makes FPGAs extremely valuable, not only for
final products where hardware upgrades may be necessary, but also for prototyping,
where designers need to test logic circuits at the hardware level before committing to
fabrication.

This flexibility is also why FPGAs occupy a unique space between traditional integrated
circuits and programmable processors. In terms of raw performance, a dedicated
integrated circuit will generally outperform an FPGA, because fixed hardware can be
optimized more aggressively. However, FPGAs offer considerably higher performance than
general-purpose processors for many digital logic tasks, because the logic can run in true
parallel hardware rather than through sequential software instructions.

Looking inside an FPGA reveals a structure known as the reconfigurable logic fabric. This
fabric consists of a large mesh of logic blocks interconnected through a programmable
routing network. The entire structure resembles a woven fabric of computational
elements. At the edges of this fabric are input/output cells that provide the interface
between the FPGA and external circuitry.

Interconnection
Logic Block Resources

rarl I
LdLJrE==d Rst+

Logic Block
170 Cell
i
A 1> |
]
B 1 Out
. ™ Lt » FF
[t [gy [DT' A
LSS ocessor | ™
|
|

Each logic block can be configured to implement different logic functions. By combining
many such blocks and customizing their interconnections, one can construct very
sophisticated circuits, including complete computer processors. A processor designed,
synthesized, and mapped onto these logic blocks can then execute software programs just
like a processor built as a traditional integrated circuit.

The name field-programmable comes from the fact that these chips can be configured
even after deployment, in the field. Unlike fixed-function chips, whose behavior is
permanently set at fabrication, an FPGA can be reprogrammed at any time to implement
new logic or updated functionality. This capability enables hardware upgrades in deployed
products just as easily as software updates, and it allows rapid iteration in research and
development.

The configurability of FPGA logic blocks allows them to host a wide range of digital
circuits from very simple ones to highly complex systems. Just as a processor can run
many different software programs, an FPGA can be configured to implement many
different logic circuits by arranging and combining its logic blocks in various ways.

In the early days of programmable logic hardware, these logic blocks were relatively
simple. They were often implemented as basic gates such as NAND or XOR. Modern
FPGAs, however, contain far more sophisticated units. These are commonly referred to as
logic blocks or logic cells, and one of their key components is the lookup table (LUT). A
LUT can be thought of as a small truth table: it accepts several inputs and produces an
output based on stored logic values. Different FPGA manufacturers offer LUTs with
varying numbers of inputs, but the concept is the same.

Along with the LUT, each logic block typically includes a flip-flop to hold state, as well as
reset and clock signals to support synchronous circuit behavior. The LUT is what makes
the FPGA configurable. By programming the contents of the LUT, one can implement
different truth tables and therefore different logic functions. If a single LUT is insufficient
for a given design, multiple logic blocks can be combined to implement larger, more
complex circuits. These blocks are then interconnected appropriately using the FPGA’s
routing network to realize the desired design.

This is the fundamental background behind how FPGAs operate and why they are so
versatile. They are widely used for hardware upgrades in deployed products, where the
underlying logic can be updated long after installation. They are also invaluable for
prototyping, enabling designers to test logic circuits at hardware level early in the
development process. In addition, FPGAs are used in high-performance applications.

Although they allow programmability like general-purpose processors, FPGAs operate
much closer to the hardware level and therefore avoid many of the performance costs
associated with software layers. As a result, FPGAs can deliver higher performance than a
typical processor for certain classes of applications.

A general-purpose computer system includes a CPU, memory, input/output interfaces,
and buses. Above the hardware lies firmware or device drivers, which allow the operating
system to communicate with the hardware securely. The operating system provides
resource management and supports multiple programs running concurrently. Application
software sits at the top, implementing the algorithms required by the user. The
performance of any algorithm depends on all these layers: hardware, firmware, the
operating system, and the application software itself. The processor may spend only a
fraction of its time executing the specific application code, creating performance
bottlenecks.

With an FPGA, however, one can bypass these layers entirely. Instead of relying on generic
hardware, the designer can take an application’s algorithm and build an
application-specific logic circuit tailored to that exact computation. The FPGA fabric is
then configured to implement this logic directly. Although this hardware is not at the
transistor level like a custom integrated circuit, the resulting performance is still
significantly higher than what a general-purpose system can provide. This is one major
way FPGAs enhance performance.

The second performance advantage comes from parallelism. While the illustration might
show a small mesh of logic blocks, real FPGAs contain thousands or even millions of these
elements, enabling very large designs on a single device. In the hardware community, a
reusable circuit is often referred to as an intellectual property (IP) block. If an application
can be parallelized, multiple instances of an IP block can be placed on the FPGA and
operated simultaneously. This resembles having many processor cores, but at a much finer
granularity, hundreds of small hardware circuits operating in parallel on distributed data.

Just as GPUs use a SIMD (single-instruction multiple-data) model for parallel processing,
an FPGA can host multiple copies of identical circuits or heterogeneous blocks performing
different tasks, all running concurrently. Multiple FPGAs can be connected together to
create massive parallel hardware systems capable of hosting very large designs.

One commercial example of FPGA-accelerated performance is high-frequency trading in
financial markets. In stock markets and foreign exchange markets, trading decisions must
be made in extremely short time frames, often in fractions of a millisecond. Human

traders cannot react at such speeds, but machines can. FPGAs are used to analyze market
data at very high rates and make rapid buy or sell decisions. The FPGA receives real-time
market data through fast network connections and performs risk analysis and
decision-making logic at hardware speed. A traditional programmable computer then
manages the broader system, while the FPGA handles the critical high-speed
computations that provide a competitive advantage. Many firms employ such FPGA-based
systems to achieve significant financial gains.

This example illustrates how FPGAs are integrated into modern high-performance
applications: by combining their reconfigurable hardware capabilities with traditional
processors, systems can achieve both flexibility and extreme speed. FPGAs therefore play
a central role in environments where rapid decision-making and parallel data processing
are essential.

The FPGA typically works alongside a traditional processor, with the FPGA handling the
high-performance portions of the workload while the processor manages overall
coordination. This hybrid approach is used in many real-world systems. For example,
major search engines such as Microsoft Bing and even Google use FPGAs to accelerate
large-scale data-processing tasks like page ranking, where vast amounts of information
must be analyzed very quickly.

Cloud and distributed services such as Microsoft Azure also make extensive use of FPGAs.
Large data centers must handle enormous numbers of requests from around the world,
and FPGAs provide highly parallel, high-throughput computation that complements
conventional servers. More recently, hybrid computing has emerged, where a single chip
integrates both CPU cores and FPGA fabric. Part of the chip functions as a processor,
while another part serves as a reconfigurable FPGA region. These hybrid processors are
now commercially available and are targeted primarily at cloud and data-center
workloads, where both flexibility and performance are essential.

The increasing interest in FPGAs is reflected in large industry shifts. Intel’s acquisition of
Altera several years ago, valued at approximately 16.7 billion USD, was a major strategic
move that positioned Intel to incorporate FPGA technology directly into its server-grade
and data-center products. Although FPGAs are not a new technology (they have existed
since the 1980s) their relevance has grown again as traditional CPU performance gains
have begun to encounter physical and architectural limits. To overcome these bottlenecks
and continue improving performance for large-scale applications, FPGAs have re-emerged
as critical components in modern computing.

10

The FPGA Evaluation Board

For practical work, we use a Cyclone IV FPGA on an evaluation board designed for
education and experimentation. This board includes a range of peripheral components
hard-wired to the FPGA, including USB interfaces, Ethernet, buttons, switches, LEDs, and
general-purpose 1/0. Each of these components is mapped to specific FPGA pins, and the
manual provides detailed information about these connections. By routing your FPGA
design appropriately, you can use these external devices as part of your experiments.

Audio TV Decoder

CODEC (NTSC/PAL) 28MHz Oscillatar

Ethernet Ethernet
VGA 10/100/1000M 10/100/10000 RS-232
Use usB UsB Mic Lline Line |Video Out Port0 Port 1 Part
Blaster Port Deavice Host In In Out

i)

12V DC Power el 5/2 Port
Supply Connector \
Triple &-bit VGA DAC
Power
ON/OFF Switch

Gigabit Ethernet PHY

Altera US8 Blaster

Controller chipset
ps: Expansion Header (J15)

USB Host/Slave {with Protection Diodes)
Controller
Altera EPCS64 HSMC Connector

Configuration Device I 2 .

Altera 60-nm Cyclone IV E
FPGA with 115K LEs

] 4 | | -:.) S0MHz Oscillator

-
—.'."n D-'
SMA Ext Clock Out
"?- T " . ¥

SMA Ext Clack In

LCD 16x2 Module

......

7-segment Displays

18 Red LEDs —— ia
Programming —— - — - - S En]
Mede Switch mm !

IR Receiver

18 Slide Switches GAMEB IMB 8MB 4 Push-buttons 8 Green LEDs
SDRAM x2 SRAM FLASH

1

Systems-on-Chip (SoCs)

A system on chip (SoC) integrates all major components of a computing system onto a
single chip: processors, memory, timers, communication interfaces, and
application-specific hardware. You have previously worked with microcontrollers, which
also integrate multiple components into a single package. However, microcontrollers are
generally designed for lower-level sensing and control tasks and typically contain simpler
processors. SoCs, by contrast, are aimed at more computation-intensive applications and
often include high-performance CPUs, GPUs, memory controllers, and specialized
peripherals.

The advantage of placing all components on the same chip is that communication between
them becomes fast, efficient, and low-power. If these elements were spread across
multiple chips on a circuit board, communication would require more time and energy,
and the system as a whole would be larger and more costly. By integrating everything,
SoCs achieve higher performance, lower power consumption, smaller physical size, and
reduced overall cost.

Combining SoC Concepts with FPGA Technology

When SoC concepts are combined with FPGA technology, the FPGA provides the
reconfigurable logic fabric, while soft components such as a processor, memory blocks,
timers, and communication units are implemented within that fabric. The processor can
run software programs, and the rest of the system benefits from FPGA configurability.
This results in a flexible SoC that can be modified, upgraded, prototyped, or adapted

quickly.
Application Software

0S / RTOS

(Protocols, Security, File Systems, etc.)

Hardware Abstraction Layer

Drivers

SoC Hardware Components
(CPU, Memory, I/0, etc.)

FPGA Device (Logic Fabric)

12

In this combined system, the overall software stack resembles traditional computing, but
with important differences. At the top are the application programs. Beneath them lies the
operating system, which may be a lightweight embedded OS, a real-time operating system,
or even a version of Linux, depending on the system’s requirements. Below the OS is the
hardware abstraction layer (HAL), which consists of device drivers and low-level support
code. In FPGA-based SoCs, this layer must be generated specifically for the hardware
configuration you create, because the hardware itself is designed and customized by you.

At the lowest level are the hardware components of the SoC—CPU, memory, caches,
analog-to-digital converters, counters, and other peripherals—implemented using the
FPGA'’s logic fabric. The logic fabric is configured to host the SoC, the HAL interfaces with
that hardware, the operating system provides services above the HAL, and application
software runs at the top. This forms a complete FPGA-based SoC environment.

Design Process for FPGA-Based SoCs

Designing a system on chip for an FPGA follows several key steps:

1. SoC Design
You first design the components of the SoC—CPU, memory, peripherals—using
hardware description languages such as Verilog or VHDL, or using block diagrams,
schematics, or state machines.

2. Analysis and Elaboration
The design is checked for syntax and semantic errors. The compiler analyzes the
structure of the system to ensure correctness.

3. Pin Planning
Inputs and outputs of the SoC are mapped to physical FPGA pins. These pins provide
the electrical connections from the FPGA chip to external devices on the evaluation
board.

4. Technology Mapping, Optimization, and Routing
The compiler maps your gate-level SoC design onto the FPGA’s configurable logic

blocks. It then optimizes resource usage and connects the logic blocks through the
routing network to form the complete circuit.

13

5. Assembler Generation
If the SoC includes a soft processor, the toolchain generates an assembler and other
support tools. Since the CPU architecture itself can be customized, the assembler
must be built to match the specific configuration of your processor.

6. Timing Analysis
The system is evaluated to ensure that all timing constraints are met, including the
maximum achievable clock frequency.

7. FPGA Programming
Once the design is complete, the configuration bitstream is downloaded to the FPGA.
The FPGA logic fabric then behaves as the designed hardware system.

Software Development for the SoC
From the software perspective, additional steps are required:

e Generate HAL and Device Drivers
The hardware abstraction layer is produced based on the specific set of peripherals
included in the SoC.

e Define Memory Layout
Developers must specify how memory is organized, including address spaces and
permissions, especially if multiple CPUs or applications are involved.

e Generate Compiler Support
Tools for compiling application software are configured to match the SoC
architecture.

e Select and Integrate an Operating System (Optional)
Embedded operating systems such as MicroC/OS-II or embedded Linux may be
used if the application requires more advanced features.

e Develop and Deploy Application Software

Applications are written in C or assembly and loaded onto the SoC executing on the
FPGA. These programs use the HAL to interact with hardware.

14

Laboratory Work Overview

In the practical series which unfolds in the upcoming sections, we begin by building and
testing a simple SoC on an FPGA. The first practical exercise is a guided walkthrough to
become familiar with the development tools., followed by an exercise which involves
implementing a more complex SoC capable of performing JPEG encoding. The second
practical dives into application-specific optimizations in SoCs, using custom instructions.
In the third practical, we tackle multiprocessor systems-on-chip (MPSoCs) and
interprocessor communication. The fourth and final practical deals with combining all the
above concepts into a real world application, an optimized MPSoC for efficient JPEG
encoding.

15

Practical 1

Getting Started with SoC Design

In this practical, you will use FPGA design tools to create your first System-on-Chip. The
practical consists of two parts. In Part 1, you will learn how to create hardware and software for
a simple SoC to control an LED counter. In Part 2 of the practical, you will build a SoC for JPEG
image compression. These exercises are aimed at helping you get familiar with designing and
synthesizing System-on-Chip hardware, co-design and development of embedded hardware and

software, and get hands-on experience with FPGA-based design tools.

Part 1: First SoC - LED Counter

Your task is to create a simple SoC which can display an increasing count on a set of LEDs. An

overview of your hardware system is shown in the diagrams below.

clock reset Muiltiple pins to LEDs
in in FPGA
! i
I reset |
| L) ! i |) |
| SYSTEM JTAG PIO |
| | CLOCK TIMER CPU I
I ID UART (to LEDs) I
| ock T T 7 7 7 Data] [inst. |
I cloc Master Master |
I W I
I On-chip [© I
I Memory I
l |
| |
| |
| |
| |
| |

16

The following steps will walk you through building your first SoC on FPGA.

1. Launch "Quartus II 12.1 (32.bit)" software. Click on "New Project Wizard". At the
Introduction dialog, select "Next". At page 1, name your project as FirstSoC and create a
working directory for the project as shown below. Name the top-level entity as TopLevel. Do

not use spaces in the directory or file names.

Directory, Name, Top-Level Entity [page 1 of 5]

What is the working directory for this project?

D:\CO5031Labl (]
What is the name of this project?

FirstSoc E]
What is the name of the top-evel design entity for this project? This name is case sensitive and must exactly match the entity name in the design file.
TopLevel E]
Use Existing Project Settings...

Skip to page 3. Select the device family "Cyclone IV E" and pick the device
"EP4CE115F29C7N".

Family & Device Settings [page 3 of 5]

Select the family and device you want to target for compilation.

Device family Show in "Available devices' list
Family: [Cydone IVE '] Package: ’Anv ']
Devices: |.-5.II v | Pin count: [Mv hd]
Target device Speed grade: ’Mv h]
(7} Auto device selected by the Fitter Name filter:
@ Spedific device selected in 'Available devices' list Show advanced devices || HardCopy compatible only
Other: nfa

Available devices:

Name Core Voltage LEs User If0s Memory Bits Embedded multiplier 9-bit elements PL +
EP4CE115F23C8L 1.0v 114430 281 3581312 532 4
EP4CE115F2317 1.2y 114430 231 3981312 532 4
EP4CE115F 23I8L 1.0v 114480 231 3981312
EP4CELLSF29C7 -
EP4CE115F29C8 1.2V 114480 529 3981312 532
EP4CE115F29C3L 1.ov 114480 529 3981312 532 4 D
EP4CE115F29C9L 1.0v 114480 529 3981312 532 4 Al
._:r._.,_._..n._. T T U - T

17

2. We're about to create the top-level design file for this project. Design files can be made in
one of many ways like VHDL, Verilog, schematic, state machine, etc.. We will use a
schematic (or block diagram). Create a new Block Diagram File (BDF) from the File menu
(File->New->BDF).

MNew Quartus II Project -
4 [Design Files
AHDL File
|Block Diagram,/Schematic File |
EDIF File
Qsys System File
| State Machine File I

Next, we should add some I/O pins to help connect our SoC to components outside the
FPGA (such as the LEDs). Right click on the dotted area in the BDF and select
Insert->Symbol.

UpéteSymborBoc. o
shon S EHEE PR TP

Insert 4 Symboal...

Zoom In Cirl+5pace
Zoom Qut Ctrl+shift+Space | 0ol

ado e

=

FOOM... e e

Under Libraries->primitives->pin, find the input pin symbol and click OK. Left-click to
place the symbol on the BDF. Right click on the newly added pin symbol to open the
Properties dialog. Rename the pin as INPUT CLOCK.

Libraries:

4 [primitives -
I> £ buffer

23 logic

3 other

= pin

£} bidir

£} input|

EY output L

k T =

m

P

Mame:

input E]

Next, add a Vecc symbol (Libraries->primitives->other). Add an output pin
(Libraries->primitives->pin) and name it LED[7..0]. Note that this last symbol now

represents a set of eight individual pins.

3. Now we're going to create the main component of our project, the System-on-Chip. For this,
we will use the Qsys tool (Tools->Qsys). In the starting window of Qsys, you will see a Clock

Source component called "clk_o0". Right click on this and rename it as clock.

System Contents | Address Map | Clock Settings | Project Settings | Instance Parameters | System Inspector | HOL Example | Generation|
1
B Use Conn... Mame Description Export Clock
=
clk_in Clock Input clk
: clk_in_reset Reset Input reset
-Bridges = — clk Clock Output clock
[-Clock and Reset s —l clk_reset Reset Output
: h

---Cun figuration & Programming

We need a memory for our SoC. We can either use standard memory controllers (like DDR3)
to interface external SDRAM chips on the board, or implement memories on the FPGA itself
(On-Chip Memory). Our system needs only a small amount of memory, so we will use an

on-chip memory component.

Select the On-Chip Memory from the component library (Library->Memories->On-Chip),
and click "Add". Set the total memory size as 256KB (262144B), and click "Finish". Rename
the newly added memory component as onchip_mem. You will see some errors displayed in

the Messages section at the bottom, don't worry, ignore them for the moment.

Next we should supply the clock and reset input signals to the memory. Connect both signals
by clicking on the empty circles in front of clk1 and reset1 inputs of the memory component.
Clicking will fill the circle (in black colour) to indicate the connection between the clock

component and onchip_mem component has been made.

19

]
Use Conn.. MName Description Export Clock
B clock Clock Source
clk_in Clock Input clk
clk_in_reset Reset Input reset
clk Clock Cutput clock
clk_reset Reset Output
2 onchip_mem On-Chip Memory (RAM or ROM)
— clk1 Clock Input clock
— =81 Avalen Memory Mapped Slave [elk1]
resetl Reset Input [ck1]

As the CPU in our SoC, we are going to use a Nios II RISC processor (Library->Embedded
Processors). When you click "Add", you will be taken to the processor configuration dialog
shown below. The Nios II processor has three variants (e, s and f), study the differences
between them. Select Nios II/s variant, set the Hardware multiplication type to "None" and

click "Finish".

Core Nios Il | Caches and Memory Interfaces | Advanced Features | MMU and MPU Settings | JTAG Debug Module
|~ select a Hios Il Core
Nios Il Core:) Nios e
@ Nios I's
) Nios W
Nios Il/e Nios Il/s Nios Il/f
= RISC RISC RISC
Nios Il 32-bit 32-bit 32-bit
Selector Guide Instruction Cache Instruction Cache
Branch Prediction Branch Prediction
Hardware Multiply Hardware Multiply
Hardware Divide Hardware Divide
Barrel Shifter
Data Cache
Dynamic Branch Prediction
Memory Usage (e.g Stratix V) | Two M3Ks (or equiv.} Two M9Ks + cache Three M8Ks + cache
|' Hardware Arithmetic Operation
Hardware multiplication type: None -
Hardware divide

Rename the new processor as cpu. Supply the clock and reset signals from the clock
component to cpu. Connect both data_master and instruction_master ports of cpu to the s1
port of onchip _mem. Make sure the instruction_master port of cpu is connected to the
jtag_debug_module port. Then supply the jtag_debug module_reset signal from cpu to

reset inputs of both onchip mem and cpu.

20

Use Connections Name Description Export Clock
B clock Clock Source
clk_in Clock Input clk
clk_in_reset Reset Input reset
————— clk Clock Qutput clock
— clk_reset Reset Output
E onchip_mem On-Chip Memory (RAM or ROM)
clk1 Clock Input clock
=1 Avwalon Memery Mapped Slave [clk1]
resetl Reset Input [clk1]
B cpu Mios Il Processor
clk Clock Input clock
reset_n Reszet Input [clk]
data_master Awalon Memory Mapped Master [clk]
— instruction_master Awalon Memery Mapped Master [clk]
jtag_debug_module_reset Reset Output Double-click to export
- jtag_debug_module Avalen Memery Mapped Slave [clk]
o custom_instruction_master Custom Instruction Master

Now our processor and memory are coupled. We still need to tell the cpu where exactly in
the memory it needs to look for program code, when starting execution (reset) or when
interrupts/exceptions occur. To do this, double click on cpu to bring up the configuration

dialog again. Select "onchip_mem.s1" for both Reset vector memory and Exception vector

memory.

[Reset Vector
Reszet vector memory: [nnchip_mem.51 -]
Reset vector offset: O=00000000
Reset vector: 0=00000000

|" Exception Vector
Exception vector memory: ’nnchip_rnern.s1 -]
Exception vector offset: 0x00000020

The JTAG UART provides a convenient way to communicate with our CPU through the
USB-Blaster cable. Add a JTAG UART from the component library (Library->Interface
Protocols->Serial). Click "Finish" to keep the default settings. Rename the new device as
jtag_uart. Supply the clock and reset signals from the clock component, and the
jtag_debug_module_reset signal from cpu to jtag uart. Connect the data_master port of

cpu to the avalon_jtag_slave port of jtag uart.

Our SoC needs a timer device for precise time calculations (this is required when preparing
software applications). Add an Interval Timer from the library
(Library->Peripherals->Microcontroller Peripherals). Select "Full Featured" from the

Presets list and click "Finish". Rename the new device as timer. Supply the clock and reset

21

signals from the clock component, and the jtag debug_module_reset signal from cpu to

timer. Connect the data_master port of cpu to the s1 port of timer.

To prevent accidentally downloading software compiled for a different SoC, we will add a
System ID peripheral from the library (Library->Peripherals->Debug and Performance).
Leave the 32-bit System ID as "0x00000000" and click "Finish"” (In real systems, a unique
ID could be provided). Rename the new device as sysid. Supply the clock and reset signals
from the clock component, and the jtag debug module_reset signal from cpu to sysid.

Connect the data_master port of cpu to the control_slave port of sysid.

Driving the 8 LED pins we created earlier (in the top level file) requires a parallel I/O
interface for the cpu. Go to Library->Peripherals->Microcontroller Peripherals and add a
PIO device. Select the Width as "8" bits and the Direction as "Output”, then click "Finish".
Rename the new PIO as led out. Supply the clock and reset signals from the clock
component, and the jtag debug_module_reset signal from cpu to led out. Connect the
data_master port of cpu to the s1 port of led out. In the external connection row,

double-click on the Export column to export led out pins to outside.

Use | Connections Name Description Export Clock
= clock Clock Source
clk_in Clock Input clk
clk_in_reset Reset Input reset
—_— clk Clock Output clock
———— clk_reset Reset Cutput
B onchip_mem On-Chip Memory (RAK or ROM)
clk1 Clock Input clock
=1 Avalon Memory Mapped Slave [elk1]
resetl Reset Input [elk1]
B cpu Mios Il Processor
clk Clock Input clock
reset n Reset Input [clk)

x—{

data_master
instruction_master
jtag_debug_module_reset
jtag_debug_module
custom_instruction_master
B jtag_uart
clk
reset
avalon_jtag_slave
= timer
clk
reset
51
B sysid
clk
reset
control_slave
= led_out
clk
reset
=1
external_connection

Avalon Memory Mapped Master
Avalon Memory Mapped Master
Reset Output

Avalon Memory Mapped Slave
Custom Instruction Master
ITAG UART

Clock Input

Reset Input

Axvalon Memory Mapped Slave
Interval Timer

Clock Input

Reset Input

Avalon Memory Mapped Slave
System ID Peripheral

Clock Input

Reset Input

Avalon Memory Mapped Slave
PIO (Parallel VO)

Clock Input

Reset Input

Avalon Memory Mapped Slave
Conduit Endpoint

Double-click to export

led_out_external_connec...

lchk)
[k
[ch)

clock
[chk]
[clk]

[ch)
lchk)

clock
[ch]
[clk]

clock
[clk]
[clk]

22

At this point, you may see a number of error messages. Most of the errors are due to
overlapping address ranges . Nios II processors access peripheral devices through memory
mapped 10, hence use unique address ranges for each attached peripheral device. To ensure
that each device in our system uses a unique address range, select Assign Base Addresses
from the System menu. You will see that the Base and End address on most devices in your
system are now changed, so that no overlap occurs. Note the new base address of the

led _out PIO device: 0x you will need to use this value later on.

Assign Base Addresses

Assign Interrupt Numbers]
ctions

Assign Custom Instruction Opcodes

The timer and jtag_uart in our system send interrupt requests (IRQs) to the cpu. We must
assign priorities to these interrupts. In the IRQ column, click on the empty circles in the
rows of each device and assign a number (lower number means higher priority). Assign "1"
for the timer and "16" for the jtag uart. Qsys also provides an Assign Interrupt Numbers
command which automatically connects TRQ signals. However, assigning IRQs effectively
requires an understanding of how software responds to them. Because Qsys does not know
the software behaviour, it cannot make educated guesses about the best IRQ assignment.

Now we're ready to generate our SoC. First, save the system under the name SoC. Then go to
the Clock Settings tab and make sure the clock frequency matches the oscillator on the
board, and go to the Project Settings tab and make sure the FPGA device ID is correct. Go to
the Generation tab. Leave the simulation models as "None", as we are going to deploy the
SoC in actual FPGA hardware. Click on the "Generate" button. Close Qsys and return to
Quartus II.

4. In order for Quartus to link the newly created SoC with our project FirstSoC, we must add
the Quartus IP file of our SoC to the project. On the Assignments menu, click Settings. The
Settings dialog will appear. Under Category, select Files. Next to File name, click the browse
(...) button. In the Files of type list, select Script Files (*.tcl, *.sdc, *.qip). Browse to locate
"<project directory>/SoC/synthesis/SoC.qip" and click Open to select the file. Click "Add"
to include the SoC.qip file in the project. Click "OK" to close the Settings dialog box.

23

|
¢ 4 Quartus I 64-Bit - 5
File Edit View Project | Assignments | Processing Tools Window Help 5/
. | %" Device...
DS dad % =2
- - " Settings... Ctrl+5hift+E
|Pro_1ect MNavigator = ng
|| (£ Files TimeQuest Timing Analyzer Wizard. ..
Settings - Fi = | |
Category:
General
|Files |
Libraries Select the design files you want to indude in the project. Click Add All to add all design files in the project directory to the
4 QOperating Settings and Conditions project.
Voltage
Temperature File name: E] Add
4 Compilation Process Settings - _ X X
Early Timing Estimate File Name Type Library Design Entry/Synthesis Tool
Incremental Compilation SoCfsynthesis/SoC.qip IP Variation File (.qip) <Maone > I
Physical Synthesis Optimizations Toplevel.bdf Block Diagram/Schematic File <Mone Remaove

5. We should now add the symbol for the SoC we created into our top level diagram. Open the
TopLevel .bdf file, right click on the dotted area and select Insert->Symbol. You should see a
new library called Project. Select the SoC block from the Project library and place it on the
top level diagram . Next, we connect the previously added pins to the new SoC block.
Connect the INPUT _CLOCK pin to the clock input of the SoC, and the VCC pin to the reset
signal of the SoC. Finally, connect the set of pins LED[7.0] to

led_out_external connection_export[7..0].

clig
_ gl clk clk

reset
reset_reset n reset n

led_out_external_connection
led out_egxderpal connectign expor (1

expart

Save the TopLevel.bdf file.

24

6. Now that our hardware design is complete, we should ask Quartus to perform a preliminary
analysis on it and identify any errors. Start the analysis and elaboration process
(Processing->Start->Start Analysis and Elaboration). This may take a few minutes to

finish.

7. After an error-free analysis, the next step is to map the inputs/outputs of our hardware
design to the outside world (external components on the board, outside the FPGA). Since we
use an evaluation board, the FPGA device's pins are already hardwired to these external
components. So, all we have to do is map the inputs/outputs of our design to specific pins of
the FPGA device.

In the Assignments menu, click on the Pin Planner. This will bring up a vivid diagram, with

the top view pin layout of our FPGA device.

4 Quartus I 64-Bit - S/

File Edit View Project | Assignments | Processing Tools Window Help =
DEdd & & % Device...
IProject Navigator " Settings... Ctrl+5hift+E
[Files TimeQuest Timing Analyzer Wizard...
@ SoC fsynthesis/SoC.gif |
@ TopLevel bdf “&# Assignment Editor Cirl+5hift+aA
&4 PinPlanner Ctrl+Shift+N

At the bottom, you will see a list of I/O pins in our design (clock input and LED outputs). At
each row, double click on the Location column to select an appropriate pin from the list.
Lists of various pin numbers and their corresponding hardwired components can be found

in the user manual of the FPGA development kit.

25

I
Mode Mame Direction Location 10 Bank VREF Group 10 Standard Reserved

in_ INPUT_CLOCK Input PIN_Y2 2 B2_MO 2,5V (default) 8
24 LED[7] Output 2.5V (default) 8
24t LED[8] Output 2,5V (default) 8
4 LED[S] Qutput 2,5V (default) 8
Ut LED[4] Output 2,5V (default) 8
24 LED[3] Output 2.5V (default) 3
24t LED[2] Output 2,5V (default) 8
24 LED[1] Output 2,5V (default) 3
24t L ED[O] Output PIN E21 E}?
< <new node = PIN_E21 IOBANK_7 Column Ij0 DIFFIC_T58n -

PIN_E22 IOBANK_7 Column 10 DIFFIO_T&0p

PIN_E24 IOBANK_7 Column 10 DIFFIO_T48n

PIN_E25 IOBANK_7 Column IO DIFFIO_T48p

PIN_E26 IOBANK_6 Row IjO DIFFIC_R10n

PIN_E27 IOBANK_6 Row IjO DIFFIO_R12p 4

PIN_E28 IOBANK_6 Row IjO DIFFIO_R12n, PADD23

PIN_F1 IOBAMK_1 Row IjO DIFFIO_LSn

PIN_F2 IOBANK_1 Row IjO DIFFIO_LSp

PIN_F3 IOBANK_1 Row IjO DIFFIO_L4n -

Select pins for all inputs and outputs in the list. Close the Pin Planner window when done.

On the Assignments menu, click Device. The Device dialog will appear. Click the "Device and
Pin Options" button. In the Unused Pins page, set Reserve all unused pins as "input
tri-stated with weak pull-up". With this setting, all unused I/O pins on the FPGA enter a

high-impedance state after power-up.

Category:

| Configuration
Programming Files Specfy device-wide options for reserving all unused pins on the device, To reserve individual dual-
T purpose configuration pins, go to the Dual-Purpose Fins tab. To reserve other pins individually, use
Dual-Purpose Pins the Assignment Editor.
Capacitive Loading) = = =
Board Trace Model Reserve all unused pins: [As input tri-stated with weak pull-up -
10 Timing
Voltage
Fin Flacement

Click "OK" to close the Device and Pin Options dialog. Click "OK" to close the Device dialog.

26

8. It's time to compile our hardware design. The compiler will perform the number of tasks: 1)
analysing the design; 2) synthesizing; 3) fitting (placing and routing); 4) generating
assembler; and 5) analysing the timing. Select Processing->Start Compilation or click the

* button to start the compilation. At the end, you should see a summary report like below.

Flow Summary

Flow Status Successful - Wed Aug 10 09:03:48 2016
Quartus II 64-Bit Version 12.1Build 177 11/07/2012 5] Full Version
Revision Name SoC
Topevel Entity MName SoC
Family Cydone IV E
Device EP4CE115F25C7
Timing Models Final
Total logic elements 2,424 /114,480 (2%)
Total combinational functions 2,258 /114,480 (2 %)
Dedicated logic registers 1,293 /114,480 {1 %)
Total registers 1293
Total pins 9/529(2%)
Total virtual pins 0
Total memory bits 2,125,888 [3,981,312 (53 %)
Embedded Multiplier 9-bit elements 0 /532 (0 %)
Total PLLs 0f4(0%)

The report shows various resource usages for our hardware design, from the available FPGA

resources.

9. Expand TimeQuest Timing Analyzer and click on " Multicorner Timing Analysis Summary
" from the table of contents. This shows the timing performances of the clock signals. Any
negative slack values indicate the paths for the clock are too slow. Prior to compilation, you
can manually set design constraints through an SDC file, which will force the fitting

algorithm to try alternate options to satisfy the constraints.

Multicorner Timing Analysis Summary

Clock Setup Haold Recovery Remaoval
1 Worst-case Slack 46,231 0,179 48,122 0,483
1 altera_reserved_tck 46,231 0,179 43,122 0,433
2 Design-wide TS 0.0 0.0 0.0 0.0
1 altera_reserved_tck 0.000 0.000 0.000 0.000

10. Finally, we are about to download our design onto the FPGA device. Make sure your DE2-115
board is powered and its USB Blaster port is connected to the computer. Start the
Programmer (Tools->Programmer). The programmer should automatically detect the FPGA

device and the bitstream (.sof file) to be downloaded. Click "Start" to begin downloading.

27

11. Now we're about to create a software application for our SoC. Open Nios II Software Build
Tools. As the workspace folder, create a new folder named software inside your project
directory.

& Wotcpme s ==

Select a workspace

Eclipse stores your projects in a folder called a workspace,
Choose a workspace folder to use for this session.

(VLT Tl C 0503 Lab_B1_Part 1\software - Browse...

Create a new software project (File->New->Nios II Application and BSP from Template).

3 s 1 i

File | Edit Navigate Search Run Project NiosI Window Help

New Alt+Shift+M » Mios II Application and BSP from Template
Open File... Mios I Application

o |
Close Chrl+ W Mios I Board Support Package

_ . . |®% MNiosILibrarv

Select the target hardware by browsing for "SoC.sopcinfo” file in the project directory.
Choose cpu as the CPU name from the dropdown list. Name the project as counter. Select
"Blank Project” as the template and click "Finish". You will see two new projects are created:
counter is the application program; counter bsp is the auto generated board support
package (a tiny OS). Right click on the counter bsp project, go to Nios II->BSP Editor.
Select timestamp_timer from the list and set the value to "timer". Click "Generate" button
and close the window. Save the files if prompted. Right click on the counter_bsp project

again and go to Nios II->Generate BSP.

Now we will prepare the application program. Right click on the counter project and import
the counter.c file provided to you (Right Click->Import->General->File System->Browse
for the file). Study the imported code. Insert the base address of the led out PIO device
(which you noted earlier), at the correct place in the code. Save the file, right click on the

counter project again and build it.

What do you think the statement IOWR_8DIRECT(LED_BASE,OFFSET,count); does?

28

12. Finally, it's time to run the app. Right click the counter project, go to Run As->Nios II
Hardware. A Run Configurations window may pop up. Go to the Target Connections tab
and click the "Refresh Connections" button, then "Finish".

Name: counter Mios I Hardware configuration

[B Project (ﬂ Target Connection . %5 Debuggeﬂ B Source\l =] Commorﬂ

Connections

Processors:
Cable Device Device ID Instance ID Name Architecture [Refresh Connections |

[Resolve Names]

| System ID Properties... |

The application should now be downloaded onto the FPGA, and you should see the count
value change on LEDs. Try changing the code. Any "printf”’ statements should write the
output to the JTAG interface in our SoC (jtag_uart is stdout), which will then be displayed
in the host console (these settings may be changed in the BSP)

If you encounter any errors when trying to run the software:

e Verify that you haven't missed anything at previous steps. Common mistakes are:
incorrect connections in the SoC; wiring in the schematic diagram not properly

connected; pin mapping not complete.

e If everything is in order, you may need to reduce the clock speed of the SoC using a

PLL. You may check the next part of the practical to see how this can be done.

29

Part 2: JPEG Encoder SoC

Now that you’re familiar with the process, let’s create a new SoC for JPEG image encoding using
onboard SDRAM as the main memory (instead of on-chip memory). Input and output files are
accessed from the host computer through the JTAG USB cable. LEDs on the board should

indicate the processing status in a suitable way (encoding, finished, waiting, etc.).

Create a new Quartus II project called JSoC. Name the top-level BDF as TopLevel.BDF, and

name the QSYS system as SoC. Do not use spaces in the directory/file names.

For this system, you should use a 10MHz clock for timer and sysid, 100MHz clock for the other
SoC components and 100MHz clock with a -65 degree phase shift for the on-board DRAM chip.
You can use a Phase-Locked-Loop (PLL) to generate these clocks. To facilitate communication
between SoC components using different clocks, a CLOCK CROSSING BRIDGE should be used

on the data_master bus.
Following are some important information you will need:

1. Hardware block diagram:

clock reset Multiple pins to LEDs
in in FPGA
[B -y T |
| c0 clock - 100 MHz |
! reset ;
3 C 3 7 7 7 A | 7 i
1 SYSTEM JTAG PIO |
i CLOCK PLL TII\A/IER D UART (to LEDs) CPU i
| 4 I '|‘ Iy ’|‘A A Data Inst. i
‘ clock c1 clock - AN ¥ Master Master I
v |
10MHz | Master(m0) v V¥
CROSSING Controller
BRIDGE
Salve (s0)
A

Multiple
YVVVYV¥Y signals
Onboard
DRAM Chip

(c2 clock -100MHz negative phase
shifted, to tackle clock skew)

30

a. New hardware components to be used: SDRAM Controller, Avalon ALTPLL.

b. Parameters for SDRAM Controller:

c. Parameters for Avalon ALTPLL:

Output clock co:

Output clock c1:

Output clock c2:

Preset = Custom

Chip select = 1

Banks = 4

Row =13

Column = 10

Access time (t_ac) = 6ns

Base Address = 0x0000_0000

Input frequency (inclko) = 50MHz

No asynchronous reset input or locked output
Requested Frequency = 100MHz

Requested Phase shift = 0 degrees

Requested Frequency = 10MHz

Requested Phase shift = 0 degrees

Requested Frequency = 100MHz

Requested Phase shift = -65 degrees

d. Connect the jtag_debug_module_reset signal from cpu to all reset inputs of all

components except the clock component.

e. Pinsin BDF to interface DRAM:

SDRAM_ADDR/[12..0] - output
SDRAM_BA[1..0] - output
SDRAM CAS N - output
SDRAM_CKE - output
SDRAM CS N - output
SDRAM_DQ[31..0] - bidirectional
SDRAM_DQM][3..0] - output
SDRAM_RAS N - output
SDRAM WE_N - output
SDRAM CLK - output

(Map these pins to appropriate hardwired pins, using the information in the user

manual)

31

2. Software Application:

Create a new Nios II application and BSP project called JPEG Encoder, using a blank
template and SoC.sopcinfo file as the target hardware. Import the provided code and sample
input files into the application project. Modify the code in jpeg encoder.c file to display the

processing status on the LEDs.

a) Parameters for the BSP: timestamp timer = timer (from the QSYS system)
Enable altera_hostfs software package.

hostfs_name = /mnt/host

b) When launching the application, use Debug As Nios II Hardware, instead of Run As.

This design uses both on-chip and off-chip memory. The evaluation board includes an off-chip
DRAM memory module. To access this memory, the FPGA design must include a DRAM
controller that mediates communication between the CPU and the memory chip. The design also
introduces multiple clock domains—100 MHz for the CPU and 10 MHz for components such as
the timer and system ID module. Communication across clock domains requires a

clock-crossing bridge.

A phase-locked loop (PLL) is also used to generate appropriately phased clocks. Since
off-chip memory receives clock signals through longer copper traces on the board, clock edges
arrive later than they do for on-chip components. This difference is known as clock skew. To
compensate, a phase-shifted clock is provided to the off-chip memory so that both on-chip and
off-chip components experience aligned clock edges. The phase-shift values have already been

measured for the board and are provided in the lab documentation.

32

Practical 2

Processor Customization

In the previous practical, we examined system-on-chip (SoC) design using FPGA
platforms, where a general-purpose soft processor is integrated with memory,
peripherals, and custom hardware components. While this approach provides flexibility
and rapid prototyping capability, it also raises an important question: is a general-purpose
processor always the most efficient choice for a given application?

This chapter introduces the concept of processor customization - the process of adapting
a processor architecture to better suit a specific application. Using FPGA-based SoC
platforms, designers can go beyond fixed instruction sets and modify or extend a
processor to improve performance, efficiency, and functionality. We focus on
customization techniques relevant to soft processors such as Nios II, with particular
emphasis on custom instructions.

Motivation for Processor Customization

General-purpose processors are designed to support a wide range of applications. Their
instruction set architectures (ISAs) include operations that are broadly useful, but not
necessarily optimal for every workload. As a result, application performance is often
limited by the need to express complex operations using long sequences of basic
instructions.

In contrast, Application-Specific Instruction-set Processors (ASIPs) are tailored to a
particular class of applications. By customizing the processor architecture, designers can:

Reduce execution time for critical code sections
Improve energy efficiency
Decrease code size

Offload computation from software to hardware

FPGA-based systems provide a unique opportunity to explore this design space, as the
processor itself is implemented in reconfigurable logic and can be modified without
fabricating new silicon.

33

Types of Processor Customizations
Processor customization can take several forms, including:

ISA extensions, such as adding new instructions

Custom instructions, implemented as dedicated hardware units
Datapath modifications, integrating new functional units

Memory subsystem optimizations, including cache configurations

In this practical, we focus primarily on custom instructions, as they provide a clear and
practical example of hardware-software co-design within an FPGA-based SoC.

Custom Instructions

Application software is typically written in a high-level language such as C. The compiler
translates this source code into assembly instructions defined by the processor’s ISA.

void main () {

while (..)

if (..)
y =a*b
}

Consider a program that repeatedly performs multiplication operations inside a loop. If
the ISA lacks a multiplication instruction, the compiler must generate a sequence of
simpler instructions to emulate that single operation, such as using a series of additions.
This increases the instruction count. Since the multiplications happen repeatedly inside a
loop, this series of additions get repeated in the assembly. This causes the execution time
to significantly increase.

By extending the ISA with a new instruction (for example, a ‘'mul’ instruction), and by
implementing the required hardware support to perform the multiplication, the same
operation can be executed more efficiently. If such operations occur frequently in the
application, the performance gains can be significant.

34

The Process of Including a Custom Instruction

The process of adding a custom instruction to the ISA and the microarchitecture begins
with application analysis. The typical steps involve:

1. Examining the source code and generated assembly code

2. Identifying performance-critical sections, such as loops or repeated instruction
sequences

3. Determining whether these sequences can be replaced by a single, specialized
instruction

4. Design the hardware required to support that instruction’s operation

Integrate the new hardware into the datapath along with control signals

6. Including system support to use the new custom instruction by software:

- Integrate with system libraries, and use explicitly

“u

- Implement compiler support

Operations that involve repeated arithmetic, bitwise manipulation, or data
transformations are especially good candidates. Once identified, these operations can be
implemented directly in hardware and exposed to software as new instructions.

Nios II Custom Instructions
Hardware Integration

In the Nios II processor, custom instructions are implemented as separate hardware units
connected directly to the processor datapath. The typical process includes:

1. Designing the custom instruction hardware using a hardware description language
(HDL)

2. Adding the design as a new component in **Platform Designer (Qsys)**

3. Defining interfaces and control signals according to the Nios II custom instruction
specification

4. Assigning a unique selection index for the instruction

5. Connecting the custom instruction component to the processor’s
‘custom_instruction_master’ interface

35

Once integrated, the custom hardware becomes part of the processor execution pipeline,
allowing the instruction to be executed efficiently.

Conduit interface to external

Mios Il Embedded Processor memory, FIFQ, or other logic
Custom ‘
ataa[31.0] e—
datab[31.0] i Komabic owal > result [31.0]
dk —— | T
A
—_ dk_en ——— |
reset — Multi-cycle 9 done
start ——p
Result
N[7.0)] — Extended
A4.0] —
- : reada ———p»
bl4.0] e— Internal
readth ————p| Register File
/ {[4..0] —
writerte. ———— |

Software Integration

From the software perspective, custom instructions must be made accessible to
application code. This is typically done through compiler-provided built-in functions or
macros. In the Nios II environment, custom instructions can be invoked using special
intrinsic functions defined in system header files.

Developers may:

e Explicitly call the custom instruction using built-in functions
e Integrate the instruction into system libraries
e Compare software-only implementations with hardware-accelerated versions

This enables systematic evaluation of performance improvements.

36

Exercise: Custom Instruction for CRC Computation

A practical example of processor customization is the implementation of a cyclic
redundancy check (CRC) computation as a custom instruction. CRC algorithms involve
repeated XOR and shift operations, which can be inefficient when implemented purely in
software.

Three approaches will be compared:

1. A software-only implementation using iterative modulo-2 division
2. An optimized software version using lookup tables
3. Ahardware-accelerated version using a custom instruction

In the hardware-based approach, the CRC computation is performed in parallel within the
custom instruction wunit, significantly reducing execution time. Performance
measurements can be obtained using a high-resolution timer integrated into the SoC.

Steps: Hardware

1) Create the hardware unit for the custom instruction (HDL)

2) Add as a New Component to the library in Qsys
a. give a name “CRC_CUSTOM”
b. provide the HDL files and denote the top-level, then analyze
c. set up the interfaces and signals (guide!)

3) Add an instance of CRC_CUSTOM and name it “crc”

4) Assign a selection index base value (0) (what is this?)

5) Connect “crc” to the custom_instruction_master port of the CPU

6) Add a second timer (at us scale) and name it “high_ resolution_timer”

7) Generate and compile

37

Steps: Software
1) system.h -> custom x, n, A
__built_in_custom_ini(x, n, A)
2) Study the provided source code
a. CRC algorithm needs to calculate the remainder of a division
b. method 1: iterative modulo 2 division in S/W
C. method 2: using a look-up table (optimized)

d. method 3: using the custom instruction
(XOR and shift in H/W, in parallel)

3) Assign the “high_resolution_timer” for time-stamping (BSP)

4) Build and run. Compare the performance of the three methods

38

Practical 3

Multiprocessor Systems-on-Chip

This practical introduces multiprocessor systems-on-chip (MPSoCs) using FPGA-based
design tools. You will design, implement, and evaluate a system that integrates multiple
processor cores on a single FPGA fabric, focusing on inter-processor communication

mechanisms.

A fundamental challenge in MPSoC design is enabling efficient data exchange between
processors. One widely used approach is shared memory, where processors communicate
by reading from and writing to a common memory region. Another approach is to use
dedicated hardware communication mechanisms, such as FIFO queues, which can offer

improved performance and determinism.
In this practical, you will explore both approaches in two stages:

e Part1introduces a shared-memory-based producer-consumer MPSoC.
e Part 2 replaces the shared-memory software mechanism with a dedicated

hardware FIFO, allowing you to compare the two communication strategies.

Part 1: Producer-Consumer Applications on a Shared Memory
Multiprocessor

In the first part of the practical, you will design a simple MPSoC consisting of two
processor cores that communicate through shared memory. The application follows the
classic producer-consumer model, where one processor generates data items (tokens) and

the other processes them.

39

Hardware Design

Using Platform Designer (Qsys), create a new system containing two Nios II processors,

named cpu@ and cpul. The system must satisfy the following requirements:

e Each processor must have its own timer and own JTAG UART for independent
timing and debugging.

e Each processor must use a dedicated on-chip memory as its instruction memory.

e Both processors must share a separate on-chip memory device that serves as
shared data memory.

e Asingle 50 MHz clock may be used to drive all components in the system.

Before proceeding further, discuss with your peers how the shared data memory should

be partitioned. The memory must include:

e A private data region for cpu®
e A private data region for cpu

e Ashared region accessible by both processors for inter-processor communication

Decide on a clear memory partitioning scheme and document it before continuing with

the software development.

Software Design

Once the hardware system has been completed and compiled, create two separate

software projects, one targeting each processor:

e The first project runs the producer application on cpu®.

e The second project runs the consumer application on cpu1.

To enforce the chosen memory partitioning scheme, you must modify the linker script for
each project using the BSP Editor. This ensures that private data and shared data are

placed in the correct memory regions.

You are provided with sample producer and consumer applications. Study this code

carefully to understand the expected behavior. The producer generates tokens and writes

40

them into a communication buffer, while the consumer reads and processes incoming

tokens.

Your task is to implement the communication mechanism using shared memory. A
skeleton implementation of a software FIFO queue is provided for this purpose. Carefully
study the skeleton code and complete it so that the FIFO data structure resides entirely

within the shared memory partition.
Alternatively, you may design your own software FIFO implementation, provided that:

e The FIFO is implemented exclusively within the shared data memory region

e Both processors access the FIFO in a safe and consistent manner

This part of the practical highlights the challenges of shared-memory communication,

including synchronization, memory organization, and software overhead.

Part 2: Hardware FIFO-based Communication

In the second part of the practical, you will redesign the MPSoC to use a dedicated
hardware FIFO for inter-processor communication.

Create a new MPSoC that is structurally similar to the system developed in Part 1.
However, instead of implementing a software FIFO in shared memory, include an on-chip
hardware FIFO memory component using Platform Designer.

The producer and consumer applications should be modified to use this hardware FIFO for
data transfer. Refer to the provided datasheet for the on-chip FIFO component to
understand its interface, configuration options, and usage.

Conduct a detailed comparison between the two systems you've created. By comparing
this hardware FIFO implementation with the shared-memory approach from Part 1, you
will observe how hardware-supported communication can:

e Reduce software complexity
e Improve communication performance
e Provide more predictable behavior

41

Practical 4

JPEG MPSoC Case Study

In this practical, you will design and implement a multiprocessor system-on-chip
(MPSoC) for JPEG image encoding using FPGA design tools. This exercise serves as a
capstone practical that integrates the concepts and skills developed throughout the
previous practicals, including system-on-chip design, multiprocessor architectures,

inter-processor communication, hardware FIFOs, and performance analysis.

In addition to applying previously learned techniques, this practical requires independent
technical research. You will study an existing pipelined JPEG encoder architecture
described in a provided research paper and adapt its design principles to an FPGA-based

implementation using Nios II soft processors.

The primary objective is not only to build a functional JPEG encoder, but also to
understand how pipeline parallelism, synchronization, and processor-level optimizations

affect system throughput.

Part 1: Pipelined JPEG MPSoC
Application Decomposition

JPEG encoding can be decomposed into a sequence of well-defined processing stages. In
this practical, the JPEG encoder is divided into six distinct stages, each operating on one

image macro-block:

O-O-O-CO-0-G

Stage 1: Input and Color Space Conversion
Read a macro-block from the raw image and convert pixel values from RGB format to
YCbCer.

42

Stage 2: Level Shifting
Adjust pixel values to center them around zero in preparation for frequency-domain

processing.

Stage 3: Discrete Cosine Transform (DCT)
Perform vertical and horizontal DCT operations to convert spatial-domain data into the

frequency domain.

Stage 4: Quantization

Quantize DCT coefficients using the JPEG quantization tables.

Stage 5: Huffman Encoding

Apply entropy encoding to compress the quantized coefficients.

Stage 6: Output Generation
Write the encoded macro-block to the output JPEG image.

These stages form a processing pipeline. A macro-block flows sequentially through all six
stages, and in steady-state operation each stage processes a different macro-block
concurrently. This pipelined execution model enables significantly higher throughput

compared to a single-processor sequential implementation.

Pipeline Architecture

Each pipeline stage is implemented using a dedicated Nios II processor core.

Communication between consecutive stages is achieved using hardware FIFO queues.

Each processor reads data from its input FIFO, performs the computation required for its
stage, and writes the result to its output FIFO. The FIFO queues provide buffering and
synchronization between stages, allowing them to operate at different speeds without

requiring tight coupling.

43

You are provided with a reference implementation of a pipelined JPEG encoder that uses
Tensilica Xtensa embedded processors and hardware FIFO queues. Refer to the

accompanying research paper to understand:

e The mapping of JPEG stages to processors
e The structure and role of FIFO-based inter-stage communication

e Performance considerations in pipelined multimedia processing systems
Your task is to implement an equivalent architecture on FPGA hardware using Nios II

processors and on-chip hardware FIFOs.

Synchronization and Performance Measurement

In practice, different JPEG stages have different computational workloads. As a result,
some stages execute faster than others. The overall throughput of the pipeline is therefore

limited by the slowest stage.
When a stage completes its computation faster than adjacent stages, it must either:

e Stall if its output FIFO is full, or
e Wait if its input FIFO is empty

Correct use of FIFO status signals is essential to ensure proper synchronization and

correct system behavior.

Once the system is operating correctly, measure the steady-state throughput of the

pipeline. Specifically, determine:

e How frequently encoded macro-blocks are produced

e The execution time consumed by each pipeline stage

These measurements establish a baseline for performance analysis and optimization in

Part 2.

44

Part 2: Improving Performance

The second part of this practical focuses on performance optimization. Your objective is
to improve the throughput of the JPEG encoder—that is, to increase the rate at which
encoded macro-blocks are produced during steady-state operation.

Several optimization strategies may be explored, individually or in combination.
1. Processor Customization

Customize the Nios II processors to better match the computational characteristics of the
JPEG workload. Possible techniques include:

e Adding custom instructions for frequently used or computationally expensive
operations

e Enabling instruction and data caches

e Configuring cache sizes and policies to suit program access patterns

2. Pipeline Extension

If a particular stage dominates execution time, consider dividing it into multiple smaller
stages. Increasing pipeline depth can reduce the critical stage latency and improve overall
throughput.

3. Superscalar Pipeline Stages

For stages that are significantly slower than others, introduce parallelism within a stage.
This can be achieved by using multiple processors for the same stage, each operating on a
portion of the macro-block. For example, four processors may each process one quarter of
a macro-block in parallel.

This approach increases hardware resource usage but can significantly improve
performance when the workload is highly parallelizable.

Research and Analysis

The provided research paper includes an analysis of performance bottlenecks and
optimization techniques for pipelined JPEG encoders. You are expected to:

e Study the paper carefully
e Apply relevant techniques to your own design
e Explore additional academic literature for further optimization ideas

Your final implementation should demonstrate not only functional correctness, but also a
clear and well-reasoned application of performance engineering principles.

Learning Outcomes
Upon completing this final practical, you should be able to:

e Design and implement a pipelined MPSoC for a real multimedia application

Map application stages to processor cores in a pipeline architecture

Use hardware FIFO queues for efficient inter-processor communication
Analyze system throughput and identify performance bottlenecks
Apply processor customization and parallelism to improve performance
Integrate research insights into practical FPGA-based system design

Students’ Guide to Practicals on Systems-on-Chip Design

By Isuru Nawinne

786249 " 29133

9 1

	Students' Guide to​Practicals on Systems-on-Chip Design
	Students' Guide to Practicals on Systems-on-Chip Design
	Content
	Preface
	Introduction
	Conceptual Foundations
	Guided Walkthrough
	Progressive, Realistic Design Work
	Experimentation and Inquiry
	Reflection and Analysis
	Tools Used

	Field Programmable Gate Arrays (FPGAs)
	The FPGA Evaluation Board

	Systems-on-Chip (SoCs)
	Combining SoC Concepts with FPGA Technology
	Design Process for FPGA-Based SoCs
	Software Development for the SoC
	Laboratory Work Overview

	Practical 1​Getting Started with SoC Design
	Part 1: First SoC - LED Counter
	Part 2: JPEG Encoder SoC

	Practical 2​Processor Customization
	Motivation for Processor Customization
	Types of Processor Customizations
	Custom Instructions
	The Process of Including a Custom Instruction
	Nios II Custom Instructions
	Hardware Integration
	Software Integration

	Exercise: Custom Instruction for CRC Computation
	
	Steps: Hardware
	Steps: Software

	Practical 3​Multiprocessor Systems-on-Chip
	
	Part 1: Producer-Consumer Applications on a Shared Memory Multiprocessor
	Hardware Design
	Software Design

	Part 2: Hardware FIFO-based Communication

	Practical 4​JPEG MPSoC Case Study
	Part 1: Pipelined JPEG MPSoC
	Application Decomposition
	Pipeline Architecture
	Synchronization and Performance Measurement

	Part 2: Improving Performance
	1. Processor Customization
	2. Pipeline Extension
	3. Superscalar Pipeline Stages

	Research and Analysis
	Learning Outcomes

	Students' Guide to Practicals on Systems-on-Chip Design
	By Isuru Nawinne

